PMT

MECHANICS (C) UNIT 1TEST PAPER 1Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1.	A particle moves in a straight line from A to B in 5 seconds. At time t seconds after leaving A,		
	the velocity of the particle is $(32t - 3t^2)$ ms ⁻¹ .		
	(i) Calculate the straight-line distance <i>AB</i> .	[4]	
	(ii) Find the magnitude of the acceleration of the particle when $t = 3$.	[3]	
2.	A small ball <i>P</i> , of mass 0.8 kg, is suspended from a horizontal		
	ceiling by two light inextensible strings. <i>P</i> is in equilibrium under		
	gravity with both strings inclined at 30° to the horizontal, as shown.		
	(i) Find the tension, in N, in either string.	[3]	
	(ii) Calculate the magnitude of the least horizontal force that must be applied to P in this		
	position to cause one string to become slack.		
3.	A particle P moves in a straight line through a fixed point O with constant acceleration a n	ns^{-2} .	
	3 seconds after passing through O, P is 6 m from O.		
	After a further 6 seconds, P has travelled a further 33 m in the same direction.		
	(i) Calculate the value of <i>a</i> .	[5]	
	(ii) Calculate the speed with which P passed through O.	[2]	
4.	A force of magnitude F N is applied to a block of mass M kg which		
	is initially at rest on a horizontal plane. The block starts to move <u>FN</u>		
	with acceleration 3 m s ^{-2} . Modelling the block as a particle,		
	(i) if the plane is smooth, find an expression for F in terms of M.	[2]	
	If the plane is rough, and the coefficient of friction between the block and the plane is μ ,		
	(ii) express F in terms of M u and σ	[2]	
	(ii) express F in terms of M , μ and g . (iii) Coloulate the value of μ if $E = \frac{1}{2}Mc$	[2]	
5	(iii) Calculate the value of μ if $F = \frac{1}{2}Mg$. Two smooth subgroups A and B, of masses (0 groups and 00 groups respectively, one at next or	[3]	
5.	Two smooth spheres A and B, of masses of grams and 90 grams respectively, are at rest on a smooth horizontal table. A is projected towards B with speed A may 1 and the particles callide		
	smooth norizontal table. A is projected towards B with speed 4 ms -1 and the particles collide.		
	After the collision, A and B move in the same direction as each other with speeds $u \text{ ms}-1$ a ms ⁻¹ respectively.	and 6 <i>u</i>	
	(i) Calculate the value of <i>u</i> .	[3]	
	A and B are now replaced in their original positions and projected towards each other with	speeds	
	2 ms-1 and 8 ms-1 respectively. They collide again, after which A moves with speed 7	ms ⁻¹ , its	
	direction of motion being reversed.		
	(ii) Find the speed of <i>P</i> after this collision and state whether its direction of motion has h	aan	

(1) Find the speed of B after this collision and state whether its direction of motion has been [5] reversed.

- 6. Two metal weights *A* and *B*, of masses 2.4 kg and 1.8 kg respectively, are attached to the ends of a light inextensible string which passes over a smooth fixed pulley so that the string hangs vertically on each side. The system is released from rest with the string taut.
 - (i) Calculate the acceleration of each weight and the tension in the string.[6]A is now replaced by a different weight of mass m kg, where m < 1.8, and the system is againreleased from rest. The magnitude of the acceleration has half of its previous value.(ii) Calculate the value of m.[6]
- 7. The diagram shows the speed-time graph for a particle during a period of 9*T* seconds.

(a) the acceleration for each section of the motion, [2]
(b) the total distance travelled by the particle. [2]
(ii) Sketch, for this motion, (a) an acceleration-time graph, [2]
(b) a displacement-time graph. [2]
(iii) Calculate the value of *T* for which the distance travelled over the 9*T* seconds is 3.708 km. [4]

MECHANICS 1 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME

1.	(i) $AB = \int_{0}^{5} v dt = [16t^2 - t^3] = 400 - 125 = 275 \text{ m}$	M1 A1 M1 A1	
	(ii) $a = 32-6t$ $t = 3 : a = 32 - 18 = 14 \text{ ms}^{-2}$	B1 M1 A1 7	
2.	(i) $0.8g = 2T \sin 30^0$ $T = 0.8g = 7.84$ N (ii) $F = T \cos 30^0$, $0.8g = T \sin 30^0$ $F = 0.8g\sqrt{3} = 13.6$ N	B1 M1 A1 B1 B1 M1 A1 7	
3.	(i) $s = ut + \frac{1}{2}at^2$: $3u + 4.5a = 6$, $9u + 40.5a = 39$ $21 = 27a$ $a = ms^{-2}$ (ii) $u = \frac{5}{6}ms^{-1}$	M1 A1 A1 M1 A1 M1 A1 7	
4.	(i) $F = Ma$, so $F = 3M$ (ii) $F - \mu Mg = 3M$ $F = M(3 + \mu g)$ (iii) $3 + \mu g = g$ $\mu = \frac{1}{2} - \frac{3}{g} = 0.194$	M1 A1 M1 A1 M1 A1 A1 7	
5.	(i) $60 \times 4 = 60u + 90 \times 6u$ $600u = 240$ $u = 0.4$ (ii) $60(2) + 90(-8) = 60(-7) + 90v_B$ $-180 = 90v_B$ $v_B = -2$, so speed = 2 ms ⁻¹ , direction unchanged	M1 A1 A1 M1 A1 M1 A1 A1 8	
6.	(i) $F = ma$ for each : $2 \cdot 4g - T = 2 \cdot 4a$, $T - 1 \cdot 8g = 1 \cdot 8a$ Add : $0 \cdot 6g = 4 \cdot 2a$ $a = \frac{1}{7}g = 1 \cdot 4 \text{ ms}^{-1}$ $T = 20 \cdot 2 \text{ N}$ (ii) Now $1 \cdot 8g - T = 1 \cdot 8(0 \cdot 7)$ so $T = 16 \cdot 38$, and $T - mg = m(0 \cdot 7)$ $10 \cdot 5m = 16 \cdot 38$ $m = 1 \cdot 56$	M1 A1 A1 M1 A1 A1 M1 A1 M1 A1 M1 A1 12	
7.	(i) (a) $^{7}/_{3}$ ms ⁻² , $-^{7}/_{4}$ ms ⁻² , 0 ms ⁻² (b) $45 \times 15 + \frac{1}{2} \times 35^{2} = 1287.5$ m (ii) (a) $a_{7/3}$ (b) s 15 35 45 15 35	B2 (-1 each error) M1 A1 B2 B2 45	
	$\begin{vmatrix} -7/_4 \\ \hline \\ (iii) & 15 \times 9T + 35 \times 3.5T = 3708 & 257.5T = 3708 & T = 14.4 \end{vmatrix}$	M1 A1 M1 A1	12

PMT